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Evaluation of certain lattice sums in arbitrary dimensions? 

A N Chaba 
Universidade Federal da Paraiha, Departamento de Fisica, CCEN, JoZo Pessoa, Paraiba, 
Brasil 

Received 10 March 1980 

Abstract. For the two mutually reciprocal, unit, Bravais lattices {T} and { y }  in an m- 
dimensional Euclidean space, we present exact results for (i) a class of lattice sums 
J,(u, k ,  m)=X~exp(-UT2)/Tzk for a>O and k any real number and (ii) the class of 
complementary lattice sums S J q ,  l, j ,  m )  = 2; y-"(yZ+ q2)-' for j > 0 , l  any real number 
and (21+2j)>m. These results may be useful in dealing with finite as well as infinite 
physical systems-in particular, the ones undergoing phase transitions. The asymptotic 
results following from our expressions are in qualitative agreement with those of Hall, 
though quantitatively a slight discrepancy is noted in the case k < m / 2  for J,(a, k ,  m )  and in 
the case 1 < m/2 for S J q ,  1, j ,  m ) .  

1. Introduction 

Recently, Hall (1976a) has considered the class of lattice sums defined by 

JT(u, k, m ) = z '  exp(-uT2)/TT2k ( U  > 0 ,  k > 0) 
7 

and a class of complementary sums (Mall 1976b) defined by 

sY(q, I, j ,  m) C' y-"(y2 + q2)-' 1, j > 0,21+ 2 j  > m, ( 2 )  
Y 

where {T} and { y }  are mutually reciprocal, unit, Bravais lattices in an mdimensional 
Euclidean space. Earlier, Chaba and Pathria (1975a; hereafter this will be referred to 
as I) had found exact expressions for J7(u, k,  m), as applied to an isotropic lattice in m 
dimensions, for k = 1 and asymptotic expressions for k = 2,3,4 . . . . Although Hall 
(1976a) has extended these sums to general lattices and to all positive values of k, he has 
derived asymptotic results which hold only in the limit U + 0. For the various appli- 
cations of the sums JT(u, k, m) for positive integer k ,  the reader may refer to I. The 
motivation for the extension to all positive k has been given by Hall (1976a) and we 
shall not repeat it here. For the sums S,(q, 1, j ,  m), also, Hall (1976b) has given 
asymptotic results which are valid for the limit q + 00. Further, Hall (1976b) has 
mentioned that, for m = 3 and j = 2, the sums S,(q, 2, j ,  m) arose in the calculations, 
concerning a physical problem, by Plasket and Hall and so these sums are also of 
interest in physics. 

The purpose of this paper is to derive exact expressions for the sums JT(u, k, m) 
where k, now, is any real number and also for the sums S,(q, 1, j ,  m) for any real value of 
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1, with j > 0 and (21 + 2 j )  > m. The results obtained here may be of interest for three 
main reasons. (i) In the study of an infinite system, that is, in the thermodynamic limit, 
the physical parameters a and q may be extremely small and large respectively and the 
asymptotic results of Hall (1976a, b) may be sufficient for analysis; for a finite system, 
however, this may not be true and one may require subsequent terms of the sums as 
well. (ii) For certain studies a in JT(a, k,  m) may not be small or q in S,(q,  1, j ,  m) may 
not be too large, irrespective of the fact that the system is finite or infinite. Such a 
situation arises, for instance, in the rigorous study of Bose-Einstein condensation 
(Chaba and Pathria 1975b, Zasada and Pathria 1976), where one encounters the sum 
X:exp(-aT)/T, with the simple cubic lattice, T ,  related to the sum JT(a,  k ,  m), and there 
a varies drastically in the temperature range of interest. (iii) As pointed out by Hall 
(1976b), such sums may also be useful in the study of other phase transitions. For 
instance, if one of such sums occupies a dominant position in some of the basic 
expressions pertaining to a given physical system, then useful conclusions regarding the 
onset of a phase transition in the system may be drawn from the behaviour of the sum as 
a function of the parameters. 

The asymptotic results following from our expressions for JT(a, k, m )  and 
S,(q,  1, j ,  m) are in agreement with those of Hall (1976a, b), except for the case k < m/2 
in the former and 1 < m/2 in the latter, where slight discrepancies are noted. 

2. Evaluation of sums &(a, k, m) 

2.1. When k is a positive number, k > 0 

2.1.1. m = 2. We start with the integral representation (Gradshteyn and Ryzhik 1965) 

where the primed summation E' excludes the term with T = 0. In order to proceed 
further, it is convenient to study two separate cases, namely when k is an integer and 
when it is not an integer. 

Firstly, we take up the case when k is an integer, k = n 2 1. Then we have 

I'(n)a-"J,(a, n, 2) 

m n - 1  
= (-l)"-' e' / exp(-m2y) dy + k2 (-l)'( ) 7 1  I=O 1 

m 

x / xf-"-'( (Tx/a)  exp(-l12y2x/a) - 1) dx 
1 y 
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k - 1  
where ( 
and 

) = (k - l)(k -2) . . . ( k  - l ) / l ! ,  r (a ,  x )  is the incomplete gamma function, 

JT(O, k, m) = lim [JT(a, k, m) minus its divergent part (if any)]; ( 5 )  
a-0 

for k > m / 2 ,  JT(O, k, m )  is simply 2;  T - ' ~ .  In the second line of (4) we have separated 
out the term corresponding to 1 = n - 1 and split the integral in the remaining sum into 
two parts, and in the second part we have made use of the Poisson summation formula 
(PSF) (Stein and Weiss 1971) which, in two dimensions, reads as follows: 

C exp( -a4  = (Wa) 1 exp(-l?y2/a). 
T Y 

Now using equation (A2) of the appendix and noting that 

+ being the digamma function and C Euler's constant. 
We may pointaout here that equation (7) can also be obtained by integrations of 

equation (6) with respect to a. However, the method developed here is such that it can 
be applied even when k is not an integer. We further observe that, for n = 1, equation 
(7) goes back to ( A 2 ) ,  and the cases n = 1, 2 and 3 provide identities which are 
generalisations of equations 1(1 l), I(16) and I( 17), respectively, to arbitrary lattices. It 
may also be noted that for any lattice JT(O, 0, m) = -1 and for a square lattice ( I )  

J ( 0 ,  1 , 2 )  = C2 = y(C-ln[I'4(1/4)/483]) = 0.771 605 
and 

where 
J(0,  k, 2 )  = 4 5 ( k ) P ( k )  

l ( k ) =  2 (l+l)-k 

( k  > 1) 

m 

and P(k)= E (-1)'(21+ l)-k. 
1=0 l = O  
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Next we consider the case when k is not an integer. Let n = [ k ]  be the integral part 
of k.  We then have 

I'(k)a-kJ,(a, k ,  2 )  

k - 1  
= 2 (-l)'( ) c' 1' dxx-k+c'-' exp( - m 2 / x )  

l = O  T O  

m 
= y' (--l)I( k - 1  ) E' 5 yk-'-' exp(-aT2y) dy - 1' (-l)'( k - 1  I ) 

i=o T O  1=0 

W x jl dx x-k+l - l ( (Yx/a)  1 exp(-Y2y2x/a) - 1) + (-l)"( k - 1  ) 
Y 

k - 1  1 

dx ~ - ~ + ~ - ' ( ( Y x / u )  1 exp(-Y2y2x/a) - 1) + 2 (--l) '( I ) 
Y i = n + l  

1 

x 1 dx x-'+'--'( (qx/a) exp(-fy2x/a) - 1) 
Y 

k - 1  n-1 

= 2 (-l)'( I ) T ( k  - l)J,(O, k - 1 , 2 ) ~ - ~ + '  

+ i = n + l  f (-1)'( I ) Y 2 k - 2 i - 1 ~ ( l  - k + 1)  

i=o 

k - 1  

XJy(O, l - k + 1 , 2 ) ~ - ~ + I - ( B / ~ )  

X 2 ( - I ) ' (  k - 1  ) ( k - - l - - l ) - ' +  z (-l)'( k - 1  ) ( k - l ) - '  

- 1 ( - I ) / (  

+(- I )" (  k - 1  ) lim ( Y 2 k - 2 n - l u - k + n  1' y2k-2n-2 

m 

1=0 1=0 

k - 1  ) , ( 2 k - 2 1 - l a - k + i  C' Y 2k-21-2  
m 

r(l+ 1- k, q2y2/a) 
r=o I 

E + O  Y 

where we have separated out the terms corresponding to 1 s ( n  - l), 1 = n and 13 
( n  + l ) ,  split the integral in the first partial sum into two parts and made use of the PSF. 

Using (A3), to calculate the limit of the expression in large round brackets, and (A6), 
and noting that 

k - 1  2 (-l)'( ) ( k  - I)-1= 0 ,  
1=0 

we can finally write 

J,(u, k ,  2 ) s  C (-l)I(l!)-'J,(O, k - l , 2 ) a ' + Y A ( k ,  2)r- ' (k)ak- ' -Yak- '  
W 

1=0 

x ( - l ) r [ Z ! T ( k -  I)]- '  2' ( ~ 2 y 2 / u ) k - 1 - ' ~ ( l  + I -  k ,  T2y2/a), (10 )  
/=0 Y 
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where 
k-1 

A(k, 2) = f = O  f (-l)'-'( ) (k -  2 -  l)--' =T[/sin(kq). (11) 

2.1.2. m =3. When k is an integer, say k = n b 1, we proceed parallel to the cor- 
responding two-dimensional case. During the process, we use (A7) with p = 1 and 
finally obtain 

JT(u, n,3)= 2 (-l)f(l!)-lJT(O, n-1, 3 ) ~ ~ + 7 ~ / ~ [ ( n - l ) ! ] - ' A ( n ,  3)a"-3'2-73/2an-3/2 
f=O 

n-1 

x 1 (-ly[l!(n - 1 - l)!y C' (72y2/a)n-1-3 /2  r(3/2 + I - n, y2y2/a), 
1=0 Y 

(12) 
where 

n - 1  
A( n, 3) = 5' (- l)'-' ( )( n - I - 3/2)-' = B(n, 3/2 - n), 

I=O 

B(m, n )  being the beta function. Note that, for a simple cubic lattice (I), J(O,1, 3) = 

When k is not an integer, the procedure is similar to, but somewhat more involved 
than, the case of two dimensions. One has to split the sum appearing on the right-hand 
side of the three-dimensional counterpart of equation (31, depending on whether 
( k  - n) is greater than, equal to or less than i. During the process, use is also made of 
equations (A7) and (A10). We obtain (for k - n # 4) 

C3 =-8.913 633. 

cu 
JT(a, k, 3)= C (-l)'(1!)-'JT(O, k -  1, 3 ) ~ ' + ? ~ / ~ A ( k ,  3 ) r - ' ( k ) ~ ~ - ~ / ~ - 5 / ~ / ~ ~ ~ - ~ / ~  

I=O 

x f (-l)f[l!I'(k - 1)I-l 1' ( ~ 2 y 2 / a ) k - ' f ~ ' 3 ~ 2  I'(3/2+ 1 - k, q 2 y 2 / a ) ,  (14) 
1=0 Y 

where 

A(k, 3)= f (-l)'--'( k - 1  I )(k-1-3/2)-'= -yr(k)[I'(3/2)I'(k-l/2)]-'/cos(k7) 
l=O 

(15) 
and (for k - n = 3) 

CO J7(a, k, 3)= 2 (-l)'(1!)-'JT(O, k -  l ,3)af +y3/21'-'(k)A(k, 3)a k - 3 / 2  

I=O 

+ ( - I ) " - ~ [ ( ~  - 1)!1-127~n-1 1 ~ ( 1 / ~ ) - 7 ~ / ~ ~ k - 3 / 2  f (-1)' 
I = O  

where 
A(k,3)=f ' ( - l ) IW1( k - 1  )(k-1-3/2)-' 

I=O 

= (-1)"-'2r(k)[~'~'r(n)]-'[+(k - 1/2) - +(3/2)]; (17) 
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the primed summation here implies the exclusion of the term for which the denominator 
vanishes. In fact, this definition is comparatively more general and, for ( k  - n )  f i, 
reduces to the one in (15). 

2.1.3. General m. The above procedure can readily be extended to the case of general 
dimensionality as well. Of course, one has to study two cases separately: (i) when m is 
even, in which case calculations proceed parallel to the case of m = 2, and (ii) when m is 
odd, in which case one proceeds parallel to the case of m = 3. The result for any positive 
k, integral or not, can be written in the form 

CO 

J,(u, k,  m)= (-l)'(Z!)-'J,(O, k - I ,  pn)a'+T"''r-'(k)A(k, m ) ~ ~ - ~ / ~  
l=O 

where p occurring as one of the arguments of the Kronecker delta is zero or a positive 
integer, and 

k - 1  m 

A(k, m ) = x '  1=0 (-l)'-'( I )(k-Z-m/2)-'. 

As before, the primed summation implies the exclusion of the term, if any, for which the 
denominator vanishes. If k is an integer, say n, the sum in (19) goes only up to 1 = n - 1, 
Noting that (Gradshteyn and Ryzhik 1965) 

W 

m y ) =  c (- l ) " (y - l ) (y -2 ) . . . ( y -n ) / [n ! (x -n )1  Y BO, (20) 

A(k, m ) = B ( k ,  m/2-k), (21) 

n=o 

we have, in the case when ( k  - m/2) is not equal to zero or a positive integer, 

and, in the case when ( k  - 4 2 )  = p is zero or a positive integer, it can be shown, using 
equation (20), that 

A(k, m )  = (-1)"r(k)[r(m/2>r(p + 1>1-'[$4 P + 1) - +(m/2)1. (22) 

All the definitions and results, such as in equations (8), (ll),  (13), (15) and (17), are 
special cases of equations (19), (21) and (22). When k is an integer (equal to n),  the first 
sum in (18) is cut off at 1 = n, because J,(O, p ,  m )  = 0 when p is a negative integer, and the 
last sum is truncated at 1 = ( n  - l), because r ( p )  = 00 when p is zero or a negative 
integer. For k = 1, equation (18) reduces to 

JT(a, I, m ) = ~ ' e x p ( - a ~ ~ ) / ~ ~ = J ~ ( O ,  1, m)+a+f""A(l, m ) ~ ' - ~ / '  
7 

-7111 a ~ ~ , ~ - y ~ - ~ ' ~  C' yZ-mr(-i+m/2, f y 2 / a ) ,  (23) 
Y 

which is quite similar to equation 1(5) and is, in fact, its generalisation when applied to 
an arbitrary lattice 7. 

We may now comment on the structure of the result in (18). If ( k  - 4 2 )  is zero or a 
positive integer, there occurs a term of the type ak-'"/' ln(l/u). In addition, when k is 
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an integer, there occurs a polynominal of degree n in a, a term in akPm/' and a finite 
number of terms in the summation over l involving incomplete gamma functions. When 
k is not an integer, the first and the last summations over 1 extend to infinity. It is 
important to notice that the two terms after the first summation are independent of the 
structure of the lattice, while the coefficients J,(O, k - 1, m )  in the first summation are 
structure-dependent, except for the special case of J,(O, 0, m )  which is identically equal 
to -1. 

2.2. When k is  zero or a negative number, k s 0 

We start from equation (18) for J,(a, r, m )  with O <  r s  1, differentiate both sides with 
respect to a nl times (n l  3 1 )  and put r - nl = k so that k s 0 and n1 = [ -k]+ 1.  We 
obtain 

m 

JT(a, k ,  m )  = 1' exp(-aT2)/TZk = 2 ( - l ) ' ( l ! ) - 'J , (O,  k - 1, m)a '  
7 '20 

OD 

x T 1 ( m / 2  - k + i - nl) 1 ( - l ) ' [ l ! r ( k  - 1 + nl)]-' E' ( l12~2/a)k- '+n1-m/2 
f = O  Y 

x r ( l -  k -n l+ i+m/2 ,T2y2 /a ) .  (24) 

Here, for k s 0, A ( k ,  m )  is defined by the relation 

A ( k ,  m)I ' - ' (k)=r(m/2-  k ) rP1(m/2 ) .  

Also for k < 0, the prime on the sum X: is unnecessary. For k = 0, equation (24) just 
gives back Poisson's summation formula. For k = -n2 ,  where n2 is a positive integer or 
zero, equation (24) gives 

which could be directly obtained by differentiating the PSF n2 times. 

2.3. When k is  any real number 

We can write equations (18) and (24) together, for any real k :  

OD 

= (-l)'(l!)-'J,(O, k - 1, m)a '+ Tm12A(k, m)I ' -1(k)ak-m/2 
1=0 
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CO 

x (n1)r(m/2-k)T- ' (m/2-  k + i - n l )  c ( - l ) i [ l ! ~ ( k - I + n J l - '  
1-0 

where nl is now defined to be 

when k s 0 
when k > 0. 

Equation (27) is formally the same as equation (18 ) ,  except for the additional terms 
involving incomplete gamma functions in the last part of the right-hand side, which 
occur in the case when k s 0. 

2.4. Asymptotic resuEts for JT(a, k ,  m )  and discussion 

From equation (27) it follows that, for a << 7 ,  the sum J7(a, k,  m )  has the following 
asymptotic forms: 

(7"'2T-.1(k)A(k, m)ak-m/2  ( k  < " (29a) 
J,(a, k,  m )  = y v " 2 r - 1 ( k )  ln(l /a) ( k  = m/2) 

11, T - . 2 k  ( k  > 4 2 ) .  
7 

Thus, insofar as the asymptotic behaviour of J,(a, k, m) ,  in the limit a + O ,  is 
concerned, the discreteness of the sum is unimportant for k s m / 2  and is quite 
important for k > m/2. The case k = m/2 defines the boundary separating the two 
regions and, in this case, our sum displays a logarithmic divergence. These results are in 
complete agreement with those of Hall, except that there exists a slight error in his result 
for k < m/2. Looking at the summation for A ( k ,  m )  in equation (19) and equation 
(29a), we observe that Hall's result amounts to keeping only the ( I  = 0) term of this sum. 

In passing, we would like to mention that the asymptotic results in (29) could also be 
obtained directly by replacing the summation over T by an integration when k s m/2. 
For k > m/2, the sum is convergent for all values of a, so the desired asymptotic result is 
obtained simply by putting a = 0 in the summand. 

Although our aim was to determine the dependence of J,(a, k, m )  on a, as has been 
found in equation (27), we may indicate how one can determine, numerically, the 
constants J,(O, k, m )  which appear in that equation. For k > m/2, as we said before, 
JT(O, k, m )  = XL T and can be determined for a given value of k and for a given lattice, 
using a machine. For k S m/2, one can determine J,(O, k,  m) ,  in principle, by using its 
definition in equation ( 5 )  along with the expressions in equations (29a) and (29b), and 
using smaller and smaller values of a until the result is independent of it. Perhaps one 
could develop relatively faster methods of calculating J,(O, k, m), especially when k is a 
positive integer (see, for example, Chaba and Pathria ( 1 9 7 5 ~ )  for the determination of 
C3), but we shall not pursue it here. 

- 2 k  
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3. Evaluation of sums S,,(q, l, j ,  m) 

3.1. Exact results for S,(q,  1, j ,  m) 

Following Hall (1976b), we can write S y ( q ,  1, j ,  m) as 
a 

S,(q, 1, j ,  m) = r l ( j )  dt tf-l exp(-q2t) C' exp(-y2t)/y2' j > O .  (30) 
0 Y 

For the summation over y tha: occurs in equation (30), we use the result in equation 
(27) and obtain, for (2 1 + 2j) > m, 

when 1 s 0 
when 1 > 0 

and 

When j is a positive integer, this integral can be performed and gives 

For Z = 1, j = 1 and m = 2, equation (31) with (34) leads to 

which is the generalisation of equation I(14) when applied to an arbitrary lattice. 

3.2. Asymptotic results for S,(q,  Z, j, m) and discussion 

From equation (31), it follows that, for q >> 1, the sum S J q ,  Z, j ,  m) has the following 
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asymptotic forms : 

l>m/2. (36c) 

Again, we notice that, so far as the asymptotic behaviour of S J q ,  1, j ,  m )  in the limit 
q + CO is concerned, the discreteness of the sum is unimportant for 1 < m/2 and is quite 
important for 1 > m/2. These results also agree with those of Hall (1976b), except that 
there exists a slight error in his result for 1 < 4 2 .  Looking at equation (19) and 
equation (36a), we observe that Hall's result amounts to keeping only the ( 1  = 0) term of 
the sum in equation (19) for A(k, m).  
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Appendix 

Writing the Poisson summation formula in two dimensions as 

E' exp(-aT2) = ~ / a  - 1 + (n /a )  E' exp(-12y2/a), 
Y Y 

and integrating with respect to a, we obtain 

E' eXp(-aT2)/T2 = -7 In U + J,(o, 1, 2) + U -q E' r(0, y 2 y 2 / U ) .  (A2) 

However, multiplying ( A l )  by a"-' and then integrating with respect to a, we obtain (for 

T Y 

s z o ,  1) 

1' r(s, U T ~ ) / T ~ '  = aS/s -fiaS--'/(s - i )o , (s)  -12"-1 E' y2s-2r(i -s,  7 2 y 2 / ~ ) .  ( ~ 3 )  
7 Y 

Note that equation (A2) is the counterpart of (A3) for s = 0 or 1 ; hence (A2) and (A3) 
are complementary to each other. 

Interchanging a and ( y 2 / a ) ,  T and y, s and (1 - s), we obtain from (A3) the elegant 
relation 

D,(s)/7" = D,(l-- s)/n'-". (A4) 

= rwT(o, S, 2 ) .  (A51 

Also letting a + 0 in (A3), we find that 

Combining (A4) and (A5), we may write 

(cf equation (2.16) of Zucker (1976) which is a special case of (A6), as applied to a 
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square lattice). Further, we notice that, since D,(s) is a finite constant, J,(O, s, 2) = 0 
whenever s is a negative integer. 

Similarly, starting from the PSF in three dimensions, we obtain the following 
relationship (for s # 0,;): 

E’ r(S ,  aT2) /T2’  
7 

= a s / s + Y 3 / 2 a s - 3 / 2 / ( 3 / 2 - s ) + E T ( s ) - ~ 2 s - 3 / 2  E’ ~ ~ ‘ - ~ I ’ ( 3 / 2 - s ,  y 2 y 2 / u ) ,  
Y 

(A7) 

(A8) 

(A9) 

(A10) 

where 

E,(s)/Y” = Ey(3/2 - S ) / T ~ / ~ - ’  

r(S)J,(o, S, 3)/ys = r(3/2 - s ) ~ y ( o ,  312 - s, 3 ) / ~ ’ / ’ - ~  

and 

and (for s = o or 2) 
1’ r(3/2, ~ 7 ~ ) / 7 ~  = 2a3I2/3 -y3I2 In U + ET(3/2) -q3I2 1’ r(0, y2y2/u). 

T Y 

We may remark that (A3) and (A7) are generalisations of equations (46) and (64) of 
Chaba and Pathria (1976), when applied to arbitrary lattices. 
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